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Generalized Rank Annihilation Factor Analysis

SirThe analytical chemist is frequently confronted with the

problem of analyzing complex mixtures for which only concentrations of a

few components are of interest. In these cases, it is desirable to be able to

obtain quantitative information for the analytes of interest without concern

for the rest of the components in the sample. Second order bilinear sensors,

i.e. sensors that yield a two dimensional data matrix of the form

Mii=:kBkXikYjk , are specially suited for this purpose, and the preferred

technique for quantitation is known as rank annihilation factor analysis,

RAFA (1,2). So far this method has been applied to excitation-emission

fluorescence (1-3), LC/UV (4) and TLC-reflectance imaging spectrophoto-

metry (5) with good results. It is important to realize that not all two

dimensional techniques yield bilinear data arrays: e.g. 2D-NMR or MS/MS

data in their raw forms are not bilinear.

A limitation of rank annihilation as originally formulated is that an

iterative solution requiring many matrix diagonalizations is necessary (1).

Lorber (6) has reported a non-iterative solution presenting the problem as a

generalized eigenvalue-eigenvector equation for which a direct solution is

found by using the singular value decomposition. With his method, to obtain

the concentrations of the p analytes of interest in the sample, its bilinear

spectrum and the p calibration spectra for each pure analyte must be

recorded to obtain the concentrations. Analysis for each analyte requires a

separate calculation. This letter presents the generalized rank annihilation

method, of which Lorber's non-iterative method is only a particular case,

that allows simultaneous quantitation of analytes in a sample using just Codes
d/or

.,L bpcial
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one bilinear calibration spectrum obtained from a mixture of standards, one

standard for each analyte.

Generalized rank annihilation can determine the bilinear spectrum

and the relative concentration for each analyte in the unknown mixture. The

calculated spectra are next matched to those of the standards. It is then

straightforward to determine the actual concentration of each analyte from

its relative concentration and the concentration of the corresponding

standard. The full bilinear spectrum of each analyte is not actually required

for identification. One need only use a single order (e.g. only the UV

spectrum in the LC/UV case) for the match. This is an unusual type of

analysis as in most cases, analyte concentrations are estimated one at a

time thereby precluding identification.

THEORY AND DISCUSSION

Any bilinear data matrix M can be expressed as a linear combination

of the n pure-component, bilinear spectra MAk:

n

M = 2-k •Idk where ).k = Xk YkT ; (•jk =Xiyj " (X1 )

The Xk are column vectors with information in one order, e.g. excitation

spectra, and the ykT are row vectors with information in the second order,

e.g. emission spectra. If we define the U&Ak as unitary-concentration, pure-

component, bilinear spectra, N3 is the concentration of the k% compound in

M. We can rewrite eq I in matrix notation as

M X B yT (2)



where X is a matrix whose columns are the n xk vectors, yT is a matrix

whose rows are the n UkT vectors and B is a diagonal matrix with diagonal

elements that are the concentrations, Bk.

In general we will have two data matrices, the unknown

concentrations data matrix M and the calibration data matrix N. The bilinear

calibration data matrix N can similarly be represented in matrix notation as

N = X t YT (3)

where X and yT are the same matrices defined for eq 2 and t is a diagonal

matrix whose diagonal elements are the concentrations tk for the

calibration matrix.

The matrices M and N have in common the X and yT blocks, e.g. the

excitation and emission spectra are the same, differing only in their

concentration matrices, B and k respectively. Therefore, solving for X in eq

2 and eq 3 we obtain

X B = M (yT)+ (4)

X k = N (yT)+ (5)

where (YT)+ represents the pseudoinverse (7) of the matrix yT. Now we

right-multiply eq 4 by t and eq 5 by B and combine to get:

N (YT)+B = M (YTY. (6)

defining Z a (YT)+,

NZB = MZk (7)

We only know M, N and t, thus we must to solve for Z and B. Eq (7) is similar

to the generalized eigenvalue-eigenvector problem, but can riot be solved by

standard methods since N and M are not necessarily square matrices. A

solution of this equation will be discussed in the next sections, for the

following different possible cases:
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I I The calibration data matrix N has Just onecomponent, that Is

present in the sample data matrix M,

diagonal(B)= {I,132, .,d n 2 1 (8)
diagonaI(It)= (ki, 0,.., 0}(9

This is the standard RAFA problem as discussed by Lorber (6).

121 The calibration data matrix N has sever/Wcomponents, that are a

su/bsetof the components present in the sample data matrix M,

dlagonal()= 031i,02, ... , Br,J3r+ji3r+2i,2, ... , 8r+s) r 2 0 (10)

diagonal(I)= (0, 0, ... , 0, kr+1l -r+21 ... , (r+s) 5 1 (0 1)

Here, r is the number of components in the sample M that are not present in

the calibration N, and s is the number of common components.

[31 The components in the sample data matrix M are a subset of the

components present in the calibration data matrix N,

diagonal(B)- (D3,32, fps, 0 ,..., 0 s 2 1 (12)

diagonal(t)- {(ti, t, .2 ", Es, ts+i, ... , ts+t} t ' 1 (13)

Again, s is the number of common components, and t is the number of

components in the calibration N that are absent from the sample M.

[41 The most general case would be when there are analytes in the

unknown sample that are not present in the calibration sample and vice

versa,

diagonal(B)= (131,12, .,r,J~r+1,Dr+2,.., 8 r+s, 0 ,..., 0 )(14)

diagonal(,)= (0, 0, ... 0, , tr+t, tr+2, . r+s, tr+s+l, ... , •r+s.t) (15)

Here, r is the number of components in the sample M that are not present in

the calibration N, s is the number of common components, and t is the

number of components in the calibration data matrix N that are absent in

the unknown sample M.



[I1 FIRST CASE: One Component Quantitatlon

In this case, the calibration data matrix N has just one component,

Mk, that is also present in the sample data matrix. The solution for this

case has been reported by Lorber (6) and will be included here for

completeness.

The first step in solving eq 7 is to apply principal components

analysis (a) to the sample matrix M, and then express the matrices in terms

of these principal components. The principal components of M are obtained

by applying singular value decomposition (7)

M = U S VT (16)

where

M V =S U (17)

MTU= S V (18)

MTMV = S2V eigen-equations in V space. (19)

MMTU = SAU elgen-equations In U space. (20)

The next step Is to estimate the number of principal components

that are significant using abstract factor analysis (8) or cross validation

(9, 10). In the ideal case, this number is equal to the number of components n

in the sample mixture. The number of significant principal components will

allow reduction to the deterministic information contained in the M matrix,

with random error discarded in the lesser factors. To do this, a new matrix

M1 is generated from the first n "significant" columns of U, V and the upper

left corner n by n part of S,

M = U VT(21)

Now eq 7 can be rewritten as

NZ = M'lZ U S VTZ, (22)
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If we substitute Z = Y -J1 Z*, where Z* VT Z

N (V ai Z*) B = U5 YT (• 2-1 Z*) t (23)

using the orthogonality properties of Y, _TV = I Identity matrix in the

upper left n by n corner and zeros in the rest, so:

NV "Y a Z*B:= JU " .1 1 t=U(.5'-9Z* (24a)

which reduces to
(N Y_.5-1) Z*8•= Z* t• (24b)

Left-multiplying by UT and right-multiplying by B-1 gives

(WT N V S-1) Z*31 = (UTu) ZV t81- = Z* A X =- W-3 (25a)

or, finally,

(JUT N Y Z*57 ZV A (25b)

which is the usual eigenvalue-eigenvector equation, because the matrix

(JUT Nk Y a-') is square. The eigenvectors Z* are not perpendicular because

the matrix (U1T NkY S"1) is not symmetric. Because the rank of N is one,

there will be p- I zero solutions for the elgenvalues ;,k. Therefore, the only

non-zero solution will be equal to the trace of the matrix (.UT Nk V i.-7). By

calculating the trace of this matrix, i.e. ;,k, the concentration I8 of the kth

component is solved directly as Ok = tk/,k.

If the unknown sample does not have the component that is present

in the calibration sample, we cannot expand N In terms of X and Y (eq 3),

therefore eq 25b is not valid. This is an example of the fourth case

introduced in the previous section, which will be considered later in this

paper. In practice, a non-zero concentration value 13k will be obtained, so

the validity of eq 3 must be verified before applying eq 25b. Using target

factor analysis (8,11), modified for bilinear data, it is possible to check if

N is included in M (see appendix for the details of bilinear target factor

analysis). The projection matrices U U1T and V VT should leave N unchanged:
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UUT N VVT = N (26)

As pointed out by Lorber (6), if the calibration matrix N has more

than one component, i.e. its rank is greater than one, several solutions will

be obtained for the concentrations 131,B 21...,3~n but there will be no way to

match which concentration corresponds to which chemical component. The

proposed alternative is to obtain the spectrum of all the components

separately, and estimate their concentration one by one. A solution to this

problem is described in the next section, using the eigenvectors matrix Z in

eq 7, which was defined as the pseudoinverse of the YT i.e. the generalized

inverse of the pure component's emission spectra.

[2) SECOND CASE: Simultaneous Quantitation of

Several Components

in this case, the calibration data matrix N has several components,

that are a subset of the components present in the sample data matrix M.

In the first place, it is necessary to check that the components in N are a

subset of the components present in the sample data matrix M, applying

bilinear target factor analysis to the matrix N, i.e. eq 26 should be true.

If more than one component is represented in the calibration

matrix, eq 25b has several non-zero eigenvalues. The solution is a set of

eigenvalues X and their corresponding eigenvectors Z. The eigenvectors

allow us to calculate the pure spectra matrices X and yT, e.g. excitation and

emission spectra:

Z- S VT Z S VT (yT)+ (27)

VT = (V S-i Z*)+ (28)

Using the definition of M = X B T= U S VT
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XB: M (VT)+ "Ua YTY -1 Z* :UZ* (29)

The eigenvalues Nk are the 'atio of concentrations /Bfk for each

component, i.e. calibration/unknown. Having the pure spectra Xk or UkT, it is

easy to match which concentration Ik corresponds to which ratio Xk,

therefore the concentrations 3, can be estimated Ok = tk/Xk.

[31 THIRD CASE: Calibration as a Base

When the sample data matrix M is a subset of the components in the

calibration N, we must invert the procedure. The principal components of

the matrix M do not form a basis for the representation of the matrix N,

therefore eq 25b Is not valid in this case. The principal components of N are

estimated N : J$. 41 T, and equations similar to eq 25b, 28, 29 are

obtained:

(jUj.T M ,N 2-') ZN*: ZrN* AN (30)

yT ( ( f'•1-1 ZN*)+ (31)

X8 JJ ZN* (32)

The eigenvalues (AN)k are not defined as they were before. Now the

(rN)k are the ratio of concentrations O/k~k for each component, i.e. unknown

sample/calibration.

Bilinear target factor analysis can be used to test instances of the

third case. The projection of the matrix M in the spaces defined by N should

leave M unchanged:

IJUJNUT M Z y.jT = M (33)

If both this test and eq 26 fail, then we are dealing with the fourth case,

discussed in the next section. In practice, the third case can be solved using



principal components analysis or multiple linear regression, because the

spectra of all the components are known.

[41 FOURTH CASE: The General Condition

In this case, the calibration sample will have some components that

are not present in the unknown sample, and there will be some components

In this unknown sample not present in the calibration sample. Projection of

one matrix onto the principal components of the other matrix will change

its information; eq 25b and eq 30 will not be valid.

A solution to this problem can be obtained using the principal

components of the sum of the matrices M and N, defining W a M + N,
W = U1W _d.VT (34)

'rW M Ykd 5V"/ ) Z ° = W z * )kV (35)
yT I(V S_.1 Z *)+ (36)

X8 = Uw ZW* (37)

The eigenvalues Nk are the ratio of concentrations '.k/(kk+5k). For all

the components present In both mixtures, the concentration in the unknown

Is Bk=Xktk/(l-k). When one component is not present in the calibration

sample, kk = 0, and Xk = I.

The solution presented for this case can be applied to all the

previous cases, and no testing with target factor analysis is necessary. An

artificial matrix W is generated to perform the calculations. This suggests

that one could instead generate the W matrix simply by making a single

standard addition containing known amounts of all analytes to the unknown

sample, In this way the calibration mixture is added to the unknown

mixture, and the W matrix is measured directly. Quantitation by RAFA with



the standard addition method (SAM) has been discussed by Lorber (14) for

single analyte addition. This. procedure would extend the applicability of his

method to the quantitation of several analytes at a time, correcting for

matrix effects and thereby represents an extension of the generalized

standard addition method, GSAM ( 12,13), to second-order tensor data.

If we have several calibration matrices N1, N2 , ..., Nq, we can apply

the method to alI of them, one at a time, or we can handle it as a three way

factor analysis problem, using all of the information in one calculation. We

are currently working in this problem, which will be the subject of another

publication.
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APPENDIX

Target Factor Analysis (8, I 1) can be applied to bilinear data in a

similar way that It Is used to one dimensional data. For the test vectors x,

or yl, TFA can be expressed as:

JUTx1 - x, or yiT VVIT - yiT (38)

every test vector x, or yj generates a predicted targent vector x! or y,. If

the test vectors are present in the matrix M, i.e. if the ith-component, which

spectrum is x1yi, is present in M, then the predicted targent vectors should

be equal to the test vectors: x1 = xi ; y1 = Y¥ ; therefore

UUYTxi =Xi or yjT V VT = yjT (39)

using the definition of X and Y we can similarly write

UUTX = X yT yyT = yT (40)

now, If N = X t yT, then

U UTN Y_.M T (UlUTX) t (yT .V. ) = X t YT = N (41)

this is,

V UT N _VVT =N. (42)

this equation defines bilinear target factor analysis. Note that

U LIT N - N. and N ._ VT = N. (43)

In practice, due to random noise, equations 42-44 are aproximate.
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